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ON THE BEHAVIOUR OF 
OF THE 

SOLUTIONS OF DYNAMIC PROBLEMS NEAR THE EDGE 
CONTACT DOMAIN OF ELASTIC BODIES* 

1-V. SIMONOV 

The asymptotic forms of the solutions of problems of linear dynamic 
elasticity theory in the neighbourhood of a moving point of separation of 
different contact and separation conditions of bodies of dissimilar nature 
(collision andrecoil/rebound/problems) are studied. Conditions of the 
type of inequalities of a kinematic, dynamic, and energetic nature are 
taken into account. This enables complete ’ a priori information on the 
subsonic speed domains, where the solutions are singular or continuous, 
or not realized, to be given. 

The nature of the singularity of the solutions as applied to the 
dynamics of cracks on an interface is investigated in /l, 2/. 

1. Preliminary considerations. Let us consider the domains 8,, !&ERS filled with 
homogeneous linearly elastic bodies 1 and 2, ,S=H,nfi, is the common boundary (surface), 

r @) is the edge of the contact domain, Q is a point belonging to a regular piece of both 
the curve r and the surface S, where the velocities c1 and c, of the point Q with respect to 
bodies 1 and 2 and the acceleration (dldt)c, are bounded functions of t, and n is the normal 
to r at the point Q and a vector tangent to S. 

Physically, the kinematics mentioned describe the collision of elastic bodies with smooth 
surfaces at small angles, and possibly, for a large discontinuity in the tangential velocities. 

j The velocities of the particles u due to strains are considered to be small compared with the 
wave velocities and are always calculated in reference systems frozen in media 1 and 2 and 
do not change under a coordinate transformation. The reason for fixing the vectors uj is the 
non-invariance of the equations of linear elasticity theory under a Galileo transformation; 
dldt and a/at do not differ. 

Localization in initial problems, correct in formulations, for the mentioned system of 
bodies - the passage to a Cartesian coordinate system connected with the point Q and a non- 
uniform stretching of the coordinates /2-4/, results in (canonically singular) limit problems. 
They contain a truncated separating system of Lam: motion equations to describe plane steady 
motions (with velocities c, = nc,) of the elastic half-planes in the coordinate system r = x1, 
Y = s,; the x axis is directed along n and the IJ axis is perpendicular to S. Separation and 
imperfect contact conditions are posed for x> 0 and x(0, y=O. By virtue of the specific 
features of the passage tothelimit (extension along the x,y axes would occur asymptotically 
"more rapidly" than extension along the x3 axis), the velocity componentsc,' = a,- ncj tangential 
to the curve r will,not occur in the limit equations of motion. 

we discuss the question of the formulation of the contact conditions. The Coulomb dry 
friction law (below, z,v is a fixed unextended reference system) 

T= -ko,,v/~"~~o,,,, = --k,,,uss V.1) 

and the linear law of viscous resistance to shear 
r= q"=+co,, = 'IUrn, m = 1, 3 (1.3) 

r = MM, %*A v = (u1, 4), u, = t%lJ i- +n", (vl", %O) = Cl - Cl 
will be mainly considered. 

Here okI, ~,j are stress tensor and mass flow rate vector components, where the super- 
scrip on the functions defines the medium (sometimes removed),v is the total slip velocity, 
k>O and q>O are coefficients of friction, and the square brackets denote jumps in the 
functions on transferring from the upper to the lower edge. 

The viscous friction conditions are uncoupling. This is not so for (1.1): the functions 
describing plane and antiplane deformation are related by non-linear dependences, which 
complicates the problem. The main purpose of this paper is to obtain information on the 
singularities of the solutions, principally about the highest terms of the asymptotic ex- 
pansions, since the influence of neglected parts in the equations of motion can appear in 
subsequent orders. Taking the above into account, we make a simplifying assumption about the 
constancy of the coefficientsoffriction in directions 
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k,=ko,/jv ,=const, m-i, 3 li.3) 

We note that condition (1.3) is satisfied exactly if the initial formulation corresponds 
toplane strain (k, = 0, k, -ksgn y) o-r plane shear (k, - 0, k, = k sgn us). In other cases 11.3) means 
thatthevector v does not change direction on approaching the curve I' and a posteriori 
verification is needed. 

2. Formulation of the problem (plane strain), The desired functions umi and 

%I' on the interface y = 0 of the elastic half-planes satisfy conditions of no stresses 
for x>O 

1) a& = 0, i, m = 1, 2 
and an additional condition of an asymptotic nature 

[U&l = u,'/c* - u2Vc, = --d&!x < 0, 0 <x< x*, x* + 0 (2.1) 

(6 is the distance between edges) preventing "overlapping" of the edges near the contact 
point Q; one of the following conditions for x(0 

2) slip with dry friction 

I31 = (u,,l = 0, umj = --k,a,,j, k,v, > 0 

3) slip with viscous friction 

lu,l = 10;,1 = 0, u,,j = V)y, v, f 0 

4) a condition of the "comb" type (roll over without contraction) 

(~11 = [sm' = 0, ~$2 = 0 ( here ~1 s CS, V; = 0) 

and additional conditions in the form of the inequalities 

a,*j (z, 0) < 0, xc 0; 0 g F( 00 (2.3 

denoting no attraction forces between the surfaces and the extremity and non-negativity of 
the energy flux F at the point x = y = 0 (discussed in /2, 5, 6,'). 

We use the complex representations due to Galin /7/ in a somewhat modified form which 
is convenient for considering plane stationary problems of the theory of elasticity for 
solving canonical singular problems. Introduction of the complex potentials ,x~(Q) /2/ is 
equivalent to satisfaction of the equations in the domains y>O and ~(0 (c should just 
be replaced by cl in relations (1.3) from /2/). 

On the interface y = 0 

ursj = Im xlj, U? = cj Re {6&j + a& (2.31 . 
%a, j = Re Xa2, u*J = --c+ hx2 -I- ads 

aj = 

B&j-Bj , b .= Bmj ti-Bj) 
2PjRj 

w 2pjRj ' 

Here Cljr Caj are the velocities of volume expansion and shear waves, p, are shear moduli, 

RJ 
are Rayleigh functions (CR, are single positive roots of the Rayleigh equations Rj(c) = 0), 

and m, j = 1, 2. 
The estimates 

fU,j/ <const ‘ 12 I-'", 2 =Zlj -+ 0, j, m,l= 1,2 (2.4) 
result from the condition of finiteness of the flux P. 

The equalities [um] = [onof = 0, that hold for all the conditions 11-4) will be satisfied 
if the relation between the functions xrn3 are determined by analytic continuation relation- 
ships 

Xl’ (2) = - xlg = xx (z), X$‘(Z) = g@ 5 y”a (2) 

The converse is true /2/. Taking account of (2.3) and (2.5) we have 

The velocities c, and cs are of the order of the wave velocities (otherwise, quasistatic). 
Consequently, in practice V$"iC < 1, the velocities of motion of the elastic bodies themselves 
are, as a rule, small compared with the wave velocities. The exception is ricochet when the 
velocity of relative notion vr" can be commensurate with the velocities GaJ and a linear 
approximation still remains true. The approximation c,zl is considered in conditions 21, 
3) and below. 

For the sequel the analysis of the zerosoftheRayleigh functions p(c), q(o), s(c) = da -pq 
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as well as the function d(c)(e =: (c,,c,)) is important. For cr.= cS (u,O = 0) this analysis and the 
exposition of the physical meaning of the zeros, the velocities of a different kind of Rayleigh 
boundary waves, can be found in /2, 8, 9/. For vl'# 0 it is best to perform it for specific 
realizations because of the remarks made, as well as because of the large number of parameters 
and possible versions. The zeros of the functions mentioned and the solutions of the equation 
C,C, = 0 are pricked out of the subsonic velocity domain under consideration 1~~ I<czjV We 
denote the set of velocities obtained by Co (the remaining parameters are fixed). Sometimes 
degenerate situations are examined individually. 

3. Mathematical method of solution. The problems examined below for the use of 
complex representations and (2.51 reduce to a Riemann-Hilbert boundary value problem: find 
the vector function X(.Z)=(X,,X~) holomorphic in the upper z half-plane and continuously 
continuable everywhere on the real axis with the exception of the point z = 0 by means of 
the boundary condition 

rm{~x}=o,y=+0,O< Irl<oo (3.1) 
where D is a piecewise-constant non-degenerate matrix taking the values D,,D, for x< 0,x> 
0, the constraint (2.4) at the singular point z = 0, and the additional conditions resulting 
from (2.1)-(2.31, (2.6) (not made specific here). The distinction fromthe formulation of 
generalized Riemann-Hilbert problems /lo/ is in the absence of the requirement of finiteness 
of the order at infinity. 

We note the general approach to the solution of problem (3.1) on the basis of investigat- 
ing a generalized Riemann-Hilbert boundary value problem /lo, ll/. The problem often uncouples 
at once into a chain of two scalar problems for the components, each of which is reduced by 
linear substitution to the form 

Im x = Gr (.r), x> 0; aRe x - b ImX = G, (.T), X( 0 (3.2) 

where a, b E R’, G,, G, are Holder continuous real functions in their domains of definition; for 
one of the components there will certainly be Gr =G,= 0, The general solution of (3.2) can 
be represented in the form of the sum of a particular solution of the inhomogeneous problem 
x", which is easily selected below, as a rule, and a qeneral solution of the corresponding 
homogeneous problem, theproduct of the canonical solution zp /ll/ by the power series 

X = ZPPN (2) + 31" (z), PN = No f Iv,2 + . . . ,(3.3) 
P = n-r acctg (e/b), 6 # 0; p = -V1, b = 0, N,, E RI. 

We always draw a slit for uniformization of the ambiguous functions encountered along 
the half-axis y = O,z<O, and we select the branch according to the condition -_n<aqs<n. 

If the problem is not split at once, we reduce it to aHilbertproblem /lo/. Weintroduce 
the piecewise-holomorphic vector Y(z) with the jump line y = 0 according to the rule 

Y (2) = Ll,x, .V > 0; Y (s) = Y(Ij, y < 0 (3.4) 
We formulate the conjugate problem for the vector Y(z) 

Y+=Y-, x>o; Y+ = AY-, zx <XI; A = DID;%&; (3.5) 

Y (2) =-T-@), y < 0; I Y 1 < const. 12 I-% 2 --t 0 (3.6) 

where the plus or minus superscripts denote contraction on the y = 0 axis from above or 
below. We find the eigenvalues of the matrix A, following /lo,, 12/, 

det (A - hE) = 0 (3.7) 
1n the case under consideration we have two roots of (3.7), h&#= 0, the singular points 

are regular by virtue of (2.4) /12/. If the roots are prime (h,;jt;&), then two linearly 
independent solution exist for (3.6) /12/ 

(3.8) 

where the superscripts pm are selected uniquely from the interval -llt~R~~,<~~,, i.e., In hm 
is the branch of Lnh, for --IT <arg&(n. 

If h = &, then the linearly independent solutionshave a more complex structure /12/ 

(3.9) 

The solution u(s) 
linear transformation 

is expressed in terms of the vector W =(W;, rY,) by.means of the 

x =B.W (3.10) 



Definite constraints, which it is desirable to find, are imposed on the coefficients of 
the non-degenerate matrix B = {B I~>. TO do this we allow the possibility of diagonalization 
of the matrix by using the matrix T /13/ 

The substitution Y = TW in (3.51 results in a split conjugate problem for the vector 
w 

w* == cv-, x> 0; \v+ = liw-, x < 0 (3.11) 
whose solution is defined by (3.3) for A,#&, while the solution of the original problem 
(3.1) is now written in the form 

x. = D,-'(Y,, Y,), Y, = w, + w,, Yiz = t,w, -I- t,Wz 

Conditions resulting from the first requirement of (3.6): TVV (z)= TW(i) are imposed 
on N,("'), Thus, if the numbers pm are real (and distinct), then this equality is equivalent 

to the condition IV,,, (z) = W, (E), which means 

Nncm) E RI, n = 0, 1, 2, . . . ., m = 1, 2 

If the numbers pm are complex, then 

W (z) = T-T W (i) = 

and the necessary and sufficient constraints on the coefficients N,,cm) are 

N,,(') = N,cm); n = 0, 1, 2, . . .; m, 1 = 1, 2; m + 1 

The transformation Y = TW becomes degenerate in the case of multiple roots, and 
problem (3.11) generates justone linear independent solution. As is shown in /12/, the other 
has the form (3.9), and the relation between the coefficients Bl, and the constraints on 
the coefficients M, NncnV will be sought by direct subsitution of (3.10) into (3.1). 

The solutions (3.8), (3.9) form a subgroup similar to that requirinq homogeneity of the 
boundary conditions. The functions &W,(b&, b,, b,EfZ', m = 1,2 are also solutions. 

Results without intermediate calculations and, as a rule, without reference to this 
section are announced below. 

4. Slip with dry friction-separation. We formulate the boundary value problem 
for the vector X(z), an adequate physical problem for two elastic half-planes under contact 
conditions with slip and dry friction in the domain x(0, y = 0 and no stresses for r>o, 
y=o 

ImX1=Re~a=0,~ImXa~0,5>0 

Im x1 = -k, He xa, h Mtl -k PX~ = O,k,v, z=+ 0,s~ 0 

(4.1) 

where condition (2.1) is taken into account. We also take account of conditions (2.2) and 
(2.4). 

This problem separates into a homogeneous problem for the component xa and an inhomogeneous 
problem for the subsequent determination of the function x1 whose solutions are 

X1 = &r(z) + k@',(Z), xt = @PN (zh y > 0 62) 

p = zc-’ afctg I-p/(k,d)J, d #= 0 

I=,1 - cqk,a++“‘N, + cqMo, fur? - - cpd’+“Nm, s > 0 

a 18 = -k,o,,, up2 - (-l)“‘+‘sin (q) 1 x lo*“’ N, 

fu,l N (--I)“’ cgak,-’ 60s (np) 1 .z I“+“‘N, + cq Mo, x < 0 

F = 0, qo = 4% -t P 

It is assumed here that the coefficients N,, Ni can vanish. We select the number m for 
confirmation of the inequalities from (4.1) and (2.2) under the condition that m is the least 
of the possible integers. We always determine the signs ofthe functions from the sign of 
the highest term of the asymptotic form as Ix I+O. Let us formulate the results of this 
analysis. The domain of existence of the singular solution (~(0, dpk,>U, N,(O,m=O) is 
the set of points c=C,, given by the formula 

P -c 0 n I% c 0 u I&J = 0 n dP 6?7 M, -b Yl”) > 0) (4.3) 
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This is the domain of super-Rayleigh subsonic collision velocities. In the remaininq 
cases the solution is continuous at the point z = 0 and the number m is selected according 
to the conditions (v,=:u~~+ cqM,+ 0) 

du,<Onp>O=+m=O, p>O, No>0 

~~,~~nP<O~~=z2,p<0,N,<0 

dv,>O=+m=1 

(4.4) 

from which the solution (4.3) should be eliminated. The systems of inequalities (4.3) and 
14.4) are not contradictory and their solutions do not intersect, which indicates the 
solvability of the initial formulations of the problems. The version N, =N, = 0 is realized 
for super-Rayleigh subsonic recoil velocities if c,=e,<O. 

We will now analyse limit situations. The case p = 0 is in no way remarkable. F0r 

p=o p=o andthe solution is regular at the point z = 0. In the important special case 
d = 0 (for instance, identical materials and c1 = c2) the changes in (4.2)-(4.4) are: 

p = --‘I,, F = ---‘I, n~pN,,~> 0, pN,,, > 0, (--l)“‘Nm < 0 + (4.5) 
p<O ncp<O=+m=O, No<0 

p>O=tm=l, N,>O, N,‘=O 

p<Oncp>O=+m=2, N,(O, No=Nl=O 

(regarding the calculation of the flux P for p = -'is see /3, 14,'; F = 0 for p> - Y,). 
In the other limit case k, = 0 (no friction) 

x1 = PM (z), ;ta = iz%PN (a} (4.8) 

and the system of inequalities from (4.5) governing the selection of the number m, the number 
for the beginning of the series PN(z), remains in force. 

5. Slip with viscous friction - separation. The boundary conditions of the 
Riemann-Hilbert problem are formulated as follows (y = 0): 

Im x1 = Re xz = 0, p"Imxa > 0, I> 0 

Im xt = v Re bxl + dxd -k v,', 
Im Wxl + PX~ = 0, z< 0 

(5.1) 

and conditions (2.2) and (2.4) should be appended. We find the particular solution in the 
form 

xl" = - (cq)_’ VI_, n*” ES 0, q # 0; a0 = n-lqv~” In z, x~~og-~p-%?$~, q= 0; 

Following Sect.3, we introduce the vector y = (XIV ix*) for which we obtain problem 
(3.5), (3.6) where 

DO== 
Y -22rlcdp f 

2v 4 I -_v -ii_’ y=p+ iqcso 

this 

A = p -+ ivcs, s = d2 - pq, s,, = da -I- pq 

We calculate the roots of (3.7) and the coefficients diagonalizing the matrix T 

= A-' (tqcs, zty'%), b = pa + +a (.P - soa) 

Fi>O. b>O;f~=il/~,b<O 
(5.2) 

&,a = @I cW”@ =FtTgl 
The function b(e) plays an important part in the subsequent analysis. Passage through 
function denotes a qualitative passage from solutions with monotonic singularities to 

solutions with singularities of the oscillating type. It can hence be seen that zeros of 
this function exist at least for E~==c* includinq even in the pre-Rayleigh velocity range. 
Because of the large number of possible versions, we do not perform a detailed analysis of 
the zeros of the function b but we denote the set of points ceR2 where b>O by C, (the 
remaining parameters are fixed) and the set of points where b(0 by C_ while C, is the set 
of zeros of the function b. 

Let cEC+. Then we have the case of prime roots h ,,, and real superscripts pm. As follows 
from (3.8) and (5.2) 

(5.3) 
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The mention made above regarding the siqns of P,,> arc still inadequate to make a judgment 
on the singularity domains of the solutions. This is finally clarified in verifyinq the in- 
equalities. The general solution of problem (5.1) has the form 

x1 = w1 + w, + x1', ix:, = tlwl + t,W, (5.4) 

where the functions W,,, are defined by (3.8). The deduction that the solution undergoes an 
infinite discontinuity at the point z=O (at least one of the numbers pm is negative and 

N;‘“)#u, m= 1,2) in the set 

P < 0 n ((PP > 0 n CP < 0) u pq < 01 n c E c+ 

and is continuous in the remaininq domain C, in which $")#O if p>Onpm>O and IV$~)=O if 

(P>O~P,<O)U(P<O~P~>O) 
follows from conditions (2.1) and (2.2) (F= 0) and (5.3), (5.4). 

According to the remarks about the intensity coefficients, the stress and velocity 

asymptotic forms on the interface can be written down by using (2.3), (2.6), (5.4) as well as 

in the domain 1: 14 1. 
Zeros of the function 4 belong to the set C, we will present the solution in this 

degenerate case 

x1 = --@ZPPN (z)+ ~L+'n-'In 2, x2 = izpp, (z)+xxzO, Nn= R’, 

P = n-1 arct&x (PlWd)) 

Its analysis duplicates the analysis of the solution in Sect.4. It is curious that for 

4 + 0 the functions [uJ = --v,", 01," = coast (j)?f, s O,j,m= 1,2,correspond to the particular solution 

~~0 = -(&yo, xpo = 0 , i.e. , it compensates the given slip velocity v,O. 

In the domain C_ we have 

G2=1, t1=L Itll=m, PP>O 

p = p1 = p' + ip", pB = p; Znp' = arg h, 

- ?I < arg hl < n; 2np" = In 1 h, 1 

(5.5) 

and the solution x(z) is defined by (3.8), (5.4). The expansion 6(z) is sign-variable for 

Z>OP a consequence of oscillating type singularities. There is no success in satisfying 

conditions of the inequality type in C-. Therefore, the formulation of problem (5.1), meaning 

also the corresponding initial problems, contains a defect, and such a combination of conjugate 

conditions of elastic half-planes is not realized if e E c_. 
The question of eliminating the defect remains open but we note that the oscillation zone 

of the solution occupiesthe,domain 

‘, z 1 < I n 1 P” h I z I g2 x =+ l z I < exp (-znvn 1 h, 1) = 1, 

1 h I = Bo + 1/W - 1, PO = l A 1-l 1 C.Q > 1 

It is seen that for the values )h1)31 the characteristic dimension 1, of this zone is 

extremely small (it cannot be taken into account). Then an intermediate asymptotic form 

exists for ta<IzI<L, where L is the outer large characteristic dimension. In this domain 

the solution is described approximately by (5.4), (5.5), where we should set p"=O, i.e., we 

have a monotonic asymptotic form, for which confirmation of the additional conditions (2.1), 

(2.2) already has meaning. In sum,. we obtain N,#O; p>O+p’>O; p<O+p’<O. However, there 

are velocities for which In Ih,I>l. This is the neighbourhood of the points Cj = C,j E C_ ( ) iI I -+ 

m as (c, I - C,$. The oscillation zone of the solution grows for near-Rayleigh velocities and 

the solution found loses meaning. Analogous behaviour of the solution is remarked in an 

analysis of the combination separation-complete contact /l, 9,'. 
The measure of the domain C_ equals zero but the solution does not acquire an oscillating 

nature for q=O (no friction) or d= 0. It can be said that the appearance of fluctuations 
is related to the presence of two physical factors, viscous friction and inhomogeneity of the 

materials. 

Let c E C,, h,= &. For p#O 

p = 4y2c2qdz, q + 0, d + 0, tl = t, = (.Zqcd)-’ 

s = d2 (1 - Q), so = da (1 + Q), Q = Zqcq # 0 

p = n-1 arctg 'lo, sgn p = sgn (cq), p*= 0 + h, = b, = 1, p = 0 

The linearly independent solutions W, are defined in (3.9), where M,N,,("')E@. We determine 

the connection between the coefficients B,,,,ERI and M by substituting (3.10) into (5.1) and 

equating coefficients of terms of identical power. Omitting the details of the tedious 
analysis, we present the result. Two conditions should be imposed on the five numbers &l 
and M 

B,, = QB,,, 4, = GG, + nt, (rlo + s-9 MR, 

and since W, and W, already contain an arbitrary factor, we can set B,,=B,, = 1. Therefore 
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Xl = Wl t- w - %“hd, iXa = 6SWl + t,w*, :a = t, + nt, (qo + qo-‘)M (5.6) 

It can be verified that (5.6) satisfies all the initial boundary conditions of equality 

type. Satisfying inequalities ( 2.1) and (2.2). we arrive at the deduction 

P<Onc~<O+P<O. N;=+!=O, pcq<O==+N~"')=O, N$f+O 

p&Oncg>O+p>O, No("')#O,m=i,2 

Here F=O because P > -4,. 
We present the solution for the case d = 0 (e E C") 

X1 = @PM (2) i-xl*, xt = iz+*P, (a), Mn, N, E Rx 

p = n-'arctg ($C&, sgn p = sgn (cg) 

By confirmation of conditions ( 2.1) and (2.2) we establish 

d=Oncp<Onp<O+No<O, F=--‘l,nN,2cp 15.7) 
For the remaining values of the zeros of the function d(o):N, = f&F -0. 

6. Slip with constant shear resistance-separation. In the previous versions 
the friction forces sometimes grew to infinity as one approached the point Q. It is natural 
to impose a constraint on these friction forces (as is repeatedly mentioned in the literature), 
for instance, by setting CI 1p = z1 = con&, z,u,> 0 in the contact zone. Such a condition can be 
interpreted as the presence of a thin stripof plastic flow (for example, /15/). The 
corresponding problem for the function x(z) uncouples at once; its solution is produced below 

x1 = Px (z) + x-lb, In z, xz = iz-'@N (z) + idz,/p 

For p= 0 the conditions of the problem are contradictory (zr+Q). By confirming the 
inequality and the siqn-matching condition for z1 and v~, we arrive at the following deductions 

CEC,+N,<.O, F=- Vz nN,s cp; C, = {c : p < 0 f-l cp < 0) 634 
where d#=O+cdz,<O,d=O==+cq<O, 

c?ZCl=+P=N,=O, N,>O; where d#O+pdz,p < (6.2) 
0;d=O+p>O;q~O+cq<O;q=O=+7~V1>0 

Analysis of the cases N, = N1 = O,Na+ O,... does not alter conditions (6.2) in principle. 
Consequently, we conclud4 that the collision regime being studied is realized for not all 
subsonic values of the velocity c. Under conditions (6.1), the solution is singular, under 
conditions (6.2) it contains Ins but satisfaction of the condition cq<o is required in 
addition to c "not belonging" to the domain mentioned in (6.1). However, it is important to 
clarify whether there are intersections of the domains of non-realization of the contact 
conditions ule = z1 with the sinqularity domains in the dry and viscous friction cases. It 
can be shown strictly that these intersections are empty sets. Hence the deduction: when 
it is necessary to restrict friction, a scheme with a thin plastic strip is suitable; when 
this scheme is unsuitable (it is impossible to introduce plasticity outside the contact point 
91, the plasticity condition can be replaced by one of the friction conditions and a physically 
meaningful result can be obtained (with the stipulations of Sect.5) with a smooth growth of 
the stresses on the contact area, In other words, the problem of determining the singularities 
with alternative conditions on the contact area (friction, the plasticity condition) is 
solvable. 

7. Separation-condition of the "comb" type. This case models the adhesion of gear 
transmissions, say, with fine and particular teeth. The boundary value problem(3.1) with 
condition l)-4) is split, and the answer is 

x1 = Z'f& (2). Xn = iPM (Z), N,,, &f,, E R" 

cq>O+N,#O,P= Vg ncq. Noa > O;cq< 0 +N, = F = @ 

The stresses and velocities are singular, particularly in the velocity range O<C<Cajr 

i = l!? ("engagement of the gear teeth" occurs). In the opposite case O< - c<Caj the 
desired functions are continuaus. 

8. Formulation of.the plane shear problems. For the plane shear equations ('m 
is the displacement in the direction of the r, axis) 

fi*,jW$ + w;w = 0, 018' = pJ@ 9’s (8.f) 

,,j = I.L,w,vJ ) ui’ = -c,w,xJ 
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we consider the following boundary conditions (y= (1, j = 1.2), 

10. NO stresses (separation or slip without friction) 
s* = 0 

20. Slip with dry friction 

032g+ = -k302n’, cresJ% > 0, [%*I = Iii 
3O. Slip with viscous friction 

.i = VV, =/= 0 (us = L"sO + [USI) 
In all cases the inequalities (2.2) are additional conditions. We introduce the piecewise- 

holomorphic function O((zlj) by means of the formulas 

(I, = cj-~&fialz@~ -+ iols$ @ (2) = -5-@(z), y > 0 (8.2) 

which is equiavlent to satisfying the equation of motion in the domain and the condition 
[ens]= 0 on the interface. 

9. Slip with dry friction - separation. We substitute the expression for %a 
from solution (4.2) in the boundary conditions to determine the function m(z) corresponding 

to the physical conditions lo and 2' 

Im CD = 0, z > 0; Im CD = -k,o,, (2, 0). L‘Q Im d, > 0, x < 0 (y = 0). 
The function 

CD = kSaPPN (z) + P, (2). I,, E R’, Im z > (’ 

is the complete solution of the problem. 
We will write down the asymptotic form (y= 0) 

(9.1) 

where the number m is still selected according to the rules (4.3) and (4.4). From the con- 

dition for matching the signs of 4 and k, in the case p<O,m=O,N,<O when the sign of vs 

determines the component -ltjP, the inequality fi<O follows. It is not completely in 

agreement with (4.3). Therefore, the combined singular solution is realized in a velocity 

subset, shrunken as compared with (4.3), namely at the intersection 

C, = (e : B < 0 n c.1 (9.2) 

The a priori conditions (1.3) are here satisfied asymptotically. If c,= C, = e, then 

(9.2) simplifies 

C, = fc : c < 0 Cl P < 0 fl iW2 + PI > 0 U (qk2 = -p fi dv, < 0111 (9.3) 

and it is seen that the measure of the subset C, is substantially less than the measure of the 

set c, (mesC,-0 as kl+O). For clC, it must be assumed that m+p>O, and the number m is 

determined by expanded rules (4.4). Then the solutions (4 .2) and (9.1) are not singular but 

kt=koi/lr/, U1!zcqM6+vI*, u,=J3BL,ivs~, l=l,3 

i.e., conditions (1.3) that are taken by assumption are asymptotically exact, where the error 
is O([z m+p) + 0 (z). I- - 0. 

For k=O solution (9.1) is regular for all c~P,whi.le solution (4.6) is singular in 
the domain (4.3 1, where k, should be set equal to zero. Every connection between these 
solutions is lost but it is shown that the deqeneration k -0 is sometimes irregular. 

Let us make general deductions about the case of contact with dry friction. In Co there 
exist velocity ranges of the point Q forminq a subset C,, where the solutions (3.1) and (4.2) 
are singular and do not contradict all the assumptions made. These solutions are continuous 
in the subset c"\C, and, moreover, have velocities at which they possess smoothness at the 
singular point according to (4.4). Judging by (9.2) and (9.3), the measure of the singularity 
domain of the solutions is small compared with mesC" and lies in the super-Rayleigh velocity 
range. 

10. Slip with viscous friction - separation. Satisfying the boundary conditions 

ImQ,=O, s>o: ImQt=?)~Ee@+~u~O, x<o 
by the usual scheme, we obtain 

@ = zPPL (z) - ~~'fi-', --VP < p = ai-ctg (I& < 'is, Ln E R’ 

The velocity field u8j(z,Y)r analogous 40 plane strain (Sect.t;), acquires constants 
compensating the given slip velocity of bodies as rigid bodies. The solution is singular for 

9<0 and continuous for B>O. 
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PRESSURE OF A STAMP OF ALMOST ANNULAR PLANFORM ON AN ELASTIC HALF-SPACE* 

A.B. KOVURA and V.I. SAMARSKII 

The generalization of the problem of the impression of an annular stamp 
without friction into an elastic half-space /l, 2/ is considered. The 
contact domain has an axis of symmetry and is a ring bounded by curves 
of almost circular shape. The half-space material is isotropic and 
homogeneous. Determination of the pressure under the stamp reduces to 
finding two functions of a complex variable, analytic in a circle, by 
means of boundary conditions of mixed type. The unknown constants on the 
right-hand sides of the boundary conditions are determined under the 
assumption that the dimensions of the holes in the stamp are small. The 
results from /3, 4/, referring to the case of annular or almost circular 
stamps, are essentially used here. 

1. A stamp with a flat base, whose side surface is formed by cylinders r = r, (cp) and 

r=ra (cp)(rz (~)Crl(cp), cp E [-x, al) is impressed without friction in an elastic half-space z>O. 
Outside the stamp the surface of the half-space is force-free. For a given settling of the 
stamp w,, determine the pressure p(r, 0) in the contact domain S, a non-circular ring r,'(p)< 

19 c 'la (0. 
Following /5/, the potential theory problem that occurs here for the half-space z>o 

can be written in the form 

*Prikl.Matem.MeJchan.,51,1,95-lo,1987 


